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ABSTRACT Compared to single-omics data, utilizing multi-omics data helps to gain a more comprehensive
understanding of the occurrence and development of cancer, which emphasizes the necessity of developing
efficient multi-omics data fusion approaches. In this study, a novel framework based on graph convolution
neural networks with a progressively helical multi-omics data fusion strategy, named phMFGCN, is proposed
to effectively integrate multiple omics data. To demonstrate the effectiveness of our framework in addressing
the challenges of multi omics data fusion, phMFGCN and other widely-used machine learning methods
conducted comparative experiments on predicting gene-gene interactions in lung adenocarcinoma. The
results illustrated that phMFGCN outperforms other models with an accuracy of 97.94%. Additionally,
506 new gene-gene interactions predicted by this framework have been validated in databases such as
BioGrid. Finally, it was used to perform gene function prediction, and the results were inconsistent with
other existing research, for examples: Sam68, DHX9, and HNRNPK were involved in regulating multiple
lung adenocarcinoma related pathways simultaneously. All these results demonstrate the universality of
phMFGCN for different clinical tasks and it can provide reference target genes or gene-gene interactions
for cancer mechanism research and treatment research in clinical practice.

INDEX TERMS Multi-omics data fusion, graph convolution neural network, lung adenocarcinoma, gene-
gene interaction.

I. INTRODUCTION
Gene-gene interactions are fundamentally important for
understanding the structure and function of genetic pathways
in cancer, Alzheimer and other complex diseases [1], [2],
[3], [4]. Mapping interactions among genes is expected to
make breakthroughs in revealing biological mechanisms of
diseases, assessing risk factors in individual disease, and
developing treatment strategies for precision medicine [5].
Although single-omics data are quite massive [6], [7], [8],
numerous studies have shown that the information pro-
vided by single-omics data is relatively monotonous. On the
contrary, reasonable exploitations of multi-omics data may
provide complementary information and explore complex
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biological processes more holistically than single-omics
data [9], [10], [11], [12], [13]. Therefore, the development
of novel and effective models that can extract and aggre-
gatemeaningful information from heterogeneous datasets has
getting increasing attention. Unfortunately, the integration
and utilization of multi-omics data face the following chal-
lenges [14], [15]:

1) The relationships of multi-omics features in biolog-
ical processes are usually nonlinear and complex,
which requires the integration models to have strong
ability to extract such features and to capture these
relationships.

2) Different types of omics features have different con-
tributions to the target results. It requires integration
models to have the ability to pay different attention on
these different contributions accordingly.
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3) Multi-omics data are often high-dimensional, complex,
and heterogeneous, which makes it difficult for the
model to extract valid knowledge.

Comparatively higher ratios of data noise and label loss
also bring challenges. To overcome these challenges, efforts
have been made to develop different kinds of algorithms for
different biomedical downstream tasks.

• Similarity-based methods: including SNF [16], Mul-
tiplex Fusion Algorithm [17], NEMO [18] and so on.
They firstly construct a patient similarity network as an
integration basis for each type of omics data and then
update the network by network iteration nonlinearly.
As an improved method, Multiplex Fusion Algorithm
does distinguish the contribution of different types of
omics data. However, in the iterative steps, this type
of methods only focuses on similarity matrices derived
from different omics data and does not explicitly uti-
lize node features matrices, which causes their inability
to accurately capture the relationships among multiple
omics data.

• Network propagation methods: These methods
make outstanding contributions to the integration of
multi-omics data. For example, Matthew et al. used
protein-protein interaction network to integrate the
mutation data and gene expression data on sample
level by network propagation [19]. Aix et al. pro-
posed a label propagation-based method to combine
the known biological interaction network with gene
expression signatures [20]. Although the network propa-
gation approaches can integrate multiple data types, they
also use multi-dimensional node features in an indirect
way, which leads to their inadequate utilization of the
information of the multi-omics data.

• Manifold learning and convolutional neural net-
works (CNNs) methods: This type of methods use
t-distributed stochastic neighbor embedding (t-SNE),
Uniform Manifold Approximation and Projection
(UMAP), etc. to create a low dimension representa-
tion (i.e. in a 2d dimensional map) for the omics and
integrate them by CNNs [21], [22]. Li et al. created a
gene similarity network map for each omic using t-SNE
before being merged into the residual neural network
classificationmodel [23]. Bashier et al. exploitedUMAP
to embed multi-omics data to a lower dimension by
creating 2d dimensional RGB images, then the images
were used with CNNs to predict the Gleason score levels
of prostate cancer patients and the tumor stage in breast
cancer patients [24]. This type of methods focuses only
on feature information rather than structure information
of the data, it leads to their incomplete utilization of
information.

• Graph convolution neural network (GCN)-based
methods: They can explicitly utilize both graph struc-
ture and node features, which is why their performance

is generally better than the above two types of methods.
For instance, Schulte-Sasse et al. introduced EMOGI to
carry out cancer gene prediction task by concatenating
multi-omics pan-cancer data to a gene feature matrix
as input of GCN [13]. Ma et al. firstly inputted each
type of data into GCN, then concatenated the outputs
to an integrated embedding matrix [14]. Although these
are novel and effective data combining methods, the
data integration strategies they adopt are simple, which
may vulnerable to lower signal-to-noise ratio in any data
type [16], [25]. To avoid this and better capture the
relationships between different omics types, GCN-Cox
composes the multiple omics data of each patient into
a feature matrix, and executes dimensionality reduction
on each patient feature matrix by GCN, then combine
the reduced dimension results into a new embedding
matrix [26]. Besides, MOGONET [27], MOGCN [28],
and pDenseGCN [29] also discarded the simple usage
of concatenation operation and proposed new integra-
tion strategies, but their strategies only focus on the
fusion of multi-omics similarity matrix (topological
structure) but ignore the fusion of node feature data,
which makes themselves hardly overcome all above-
mentioned challenges.

In this paper, inspired by the iterative update steps of SNF
and advantages of GCN-based models, a new GCN-based
framework, named as progressively helical multi-omics data
fusion GCN (phMFGCN), was proposed to integrate multi-
omics data by focusing on the fusion of both topological
structure and node features, which can overcome all above
mentioned challenges once for all. Additionally, our frame-
work decouples and lightens GCN layers, which alleviates
the over-smoothing issue and enables the model to run on a
comparatively bigger model depth.

On the other hand, as a cancer type with high incidence
and mortality, LUAD has been widely concerned. The multi-
omics sequencing technologies and database related to lung
adenocarcinoma are very mature, which provides commend-
able data source for our study [15]. However, only a part of the
gene-gene interactions related to LUAD has been confirmed
so far. Numerous gene interactions are unknown and difficult
to verify. Predicting new possible gene interactions can be
regarded as a binary edge classification task, we strive to
complete this task by utilizing LUAD-related multi-omics
data with our framework. Experiments about gene-gene inter-
actions prediction and gene function prediction in LUAD
proves that our framework is not only potential to address
the previous challenges together but also outperforms other
machine learning methods.

II. MATERIALS AND METHODS
A. LUAD DATASETS
In this paper, LUAD data mainly includes two parts: multi-
omics datasets and label datasets.

VOLUME 11, 2023 73569



J. Zhu et al.: Progressively Helical Multi-Omics Data Fusion GCN and Its Application

1) MULTI-OMICS DATASETS
downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/repository). The Gene expres-
sion (GE) data, DNA methylation (ME) data, and somatic
mutation (MU) data of TCGA-LUAD patients were used
in our study, which were collected via the Illumina
HiSeq 2000 RNA Sequencing Version 2 platform, Simple
Nucleotide Variation Data of the whole exome sequencing
measured withMuTect2 Variant Calling Pipeline, andHuman
Methylation 450 platform, respectively.

2) LABEL DATASETS
In gene-gene interaction prediction task, the gene inter-
action dataset related to LUAD was downloaded from
GRNdb (http://www.grndb.com/) [30], which is a continu-
ously updated database containing a wide range of gene-gene
interactions. In functional gene prediction task, functional
gene sets were download fromGene Set Enrichment Analysis
(GSEA, http://www.gsea-msigdb.org/gsea/index.jsp) [31].
We used three LUAD-related signaling pathways ‘KEGG
MAPK SIGNALING PATHWAY’, ‘KEGG P53 SIGNAL-
ING PATHWAY’, and ‘KEGG CELL CYCLE’ as functional
gene sets [32], [33].

To ensure the validity of data and facilitate its subsequent
use, we referred to the annotation file to align GE, ME and
MU data according to gene symbols. After data preprocess-
ing, 9449 common genes in 449 common samples amongGE,
MU, ME, and GRNdb data were obtained. The raw feature
matrix of MU is obtained with the TTZ feature extracting
algorithm proposed by us previously [34].

B. PRELIMINARIES
Gene-gene interactions can be denoted as a graph or network
G = (V, E), where V is a set of nodes (i.e. genes) V =
{v1, v2,. . . , vn}, and E is a set of edges or links (i.e. inter-
actions between genes). The graph can be represented by an
adjacency matrixA. If there exists interaction between gene i
and gene j, which is shown in the graph as an edge connecting
node vi and vj then Ai,j = 1, and Ai,j = 0 otherwise.
GCN-based model is suitable for graph-based gene-gene

interaction prediction tasks. The implementation of GCN
relies on the structure neighborhood information which
describes the topological structure of a graph. With the
structure neighborhood information, GCN layer updates each
node’s information through message transmission [35]. Its
inputs are the normalized feature matrixXn and the adjacency
matrix An. The process of a regular GCN can be represented
as f (Xn,An):

f (Xn,An) = σ

(
D̃
−

1
2

n ÃnD̃
−

1
2

n XnWn

)
(1)

where Ãn = An+In is An with added self-loop and In is an
identity matrix; D̃i,i =

∑
j Ãi,j is the diagonal degree matrix

of Ãn; Wn is a trainable parameter matrix; σ is a non-linear
activation function. By selecting an appropriate number of

GCN layers, an embedding aggregated feature information
of the central node, its neighborhood nodes, and the local
topology structure can be obtained.

C. THE FRAMEWORK OF PROGRESSIVELY HELICAL
MULTI-OMICS DATA FUSION
Inspired by the iteratively and non-linearly updating process
of SNF [16], we proposed a GCN-based framework with
progressively helical multi-omics data fusion strategy. Con-
sidering about the fact that the fusion iteration under multi-
omics makes the model bulky and causes a huge parameter
amount, we decouple the framework by splitting the feature
transformation and neighborhood aggregation to ensure the
lightweight of the whole framework.
The whole framework consists of five steps: 1) construct

an initial graph; 2) decouple; 3) integrate multi-omics data
by progressively helical multi-omics data fusion strategy;
4) generate edge embedding vectors; 5) calculate the proba-
bility of edges. The framework and the overall algorithm are
shown in Fig. 1 and Algorithm 1, respectively.

1) CONSTRUCT AN INITIAL GRAPH
An initial graph (adjacency matrix) is required to be the input
of our framework. Because of the powerful learning ability
of phMFGCN provided by the following steps, it doesn’t
require a very precise one. Therefore, methods even as simple
as Pearson correlation or Mutual information can be used to
determine this initial graph.
In this study, Pearson correlation matrix is applied to

construct the initial graph. Due to the limitation of Pearson
correlation, the initial graph is unavoidably noisy, corre-
spondingly, a threshold is introduced as a simple filter and
the adjacency matrix element of n-th omics data is defined
as:

An, (i, j) =

{
1 if |Pn, (i, j)| ≥ θn
0 otherwise

(n = 1, 2, . . .N ) (2)

where Pn, (i, j) is the element of Pearson correlation matrix
obtained from the omics data n. An, (i, j) is the element of the
initial graph corresponding to Pn. N is the total number of
omics types. θn is the threshold.

2) DECOUPLE
Let xi be the feature vector of node vi ∈ V. From the per-
spective of nodes, (1) can be decomposed into neighborhood
aggregation and feature transformation: 1

D̃i,i
x(l)
i +

∑
j∈N1(i)

1√
D̃i,iD̃j,j

x(l)
j


(neighborhood aggregation)

σ

 1

D̃i,i
W (l)
i x(l)

i +
∑

j∈N1(i)

1√
D̃i,iD̃j,j

W (l)
j x(l)

j


(feature transformation) (3)
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FIGURE 1. Framework of progressively helical multi-omics data fusion GCN. (Left) Constructing an initial graph and feature transformation with
MLP. (Middle) Integrating multi-omics data by progressively helical multi-omics data fusion strategy. (Right) Generating edge-embedding vectors
and calculating the probabilities of edges. The whole framework consists of five steps: 1) construct an initial graph; 2) decouple; 3) integrate
multi-omics data by progressively helical multi-omics data fusion strategy; 4) generate edge embedding vectors; 5) calculate the probability of
edges. 1) and 2) steps are shown in the left part, 3) and 4) are shown in the middle part, and 5) is shown in the right part of this figure.

Although GCN-based models have numerous advantages,
the entanglement of neighborhood aggregation and feature
transformation intensify with the increasing of the model
depth, which is more common in the case of multi-omics inte-
gration and adversely affects the performance and robustness
of models [36], [37]. Additionally, the number of param-
eter matrices increases dramatically with the depth of the
GCN-based model, which is not conducive to the further
expansion of the model and even causes the over-smoothing
problem [38].

Inspired by the research of Liu et al. [38], in our frame-
work, we decouple the original CGN layer into feature
transformation and neighborhood aggregation and swap their
order to avoid the entanglement.

In the feature transformation section, the original GCN
requires multi-step nonlinear transformation of node infor-
mation through multiple parameter matrices. An MLP is
used to approximate this process. It reduces the amount of
parameter matrices and facilitate the deep expansion of the
framework. The equation is shown as follows:

H(0)
i = MLP(Xi) (4)

where Xi is preprocessed feature matrix of omics i, and H(0)
i

is the initial node embedding matrix of omics i.
In the neighborhood aggregation section, the setting of

original GCN is followed. For omics i, the single-omics
neighborhood aggregation equation is shown as follows:

NA(l)
i = L̃iH

(l)
i (5)

where L̃i = D̃
−

1
2

i ÃiD̃
−

1
2

i is symmetric normalized Laplacian
matrices.

Decoupling makes the model lighter, which enables it to
easier to be extended to deeper layers, and avoid prematurely
triggering the over-smoothing problem.

3) INTEGRATE MULTI-OMICS DATA WITH PROGRESSIVELY
HELICAL MULTI-OMICS DATA FUSION STRATEGY
Our proposed fusion strategy consists of: ① multi-omics
feature fusion;②multi-omics contribution allocation;③ node
embedding matrix aggregation.

① Multi-omics feature fusion
The multi-omics feature fusion is operated within the net-

work layers and advances in a progressive helical way to
ensure the fully mutual integration of different omics data.
Take GE, ME, and MU data as examples, the fusion strategy
is shown as follows:

H(l+1)
GE = σ (Fusion(L̃GEH

(l)
GE , L̃MEH

(l)
ME , L̃MUH

(l)
MU ))

H(l+1)
ME = σ (Fusion(L̃GEH

(l+1)
GE , L̃MEH

(l)
ME , L̃MUH

(l)
MU ))

H(l+1)
MU = σ (Fusion(L̃GEH

(l+1)
GE , L̃MEH

(l+1)
ME , L̃MUH

(l)
MU ))

(6)

Fusion() is a function to mix different omics data after
each single-omics neighborhood aggregation. According to
different downstream tasks and performance requirements,
the summation, concatenation, max-pooling, and other oper-
ators can be selected as Fusion(). In our study, considering
the balance between computational complexity and model
performance, summation is chosen as the fusion function.
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After fusion, different omics data will update each other
through progressive iteration.

This fusion strategy consists of linear or non-linear features
fusion, nonlinear feature transformation, and progressively
iterative update among multi-omics data, which simultane-
ously integrates multi-omics feature matrices and topological
structure and is potential to capture complex relationships
among different omics data. The equations for the feature
fusion about more omics types are shown in Algorithm 1.

② Multi-omics contribution allocation
After each time of fusion, the omics node-embedding

matrices will be updated. To make better use of each omics
node-embedding matrix, weight is assigned to each type of
omics. For the result of iteration L, we have:

Z(L)
= αGEH

(L)
GE + αMEH

(L)
ME + αMUH

(L)
MU (7)

where αi is the weight coefficient of node-embedding matrix
of omics i. It is a hyper-parameter used to measure the con-
tribution of the corresponding omics features. For different
omics, the sum of these weight coefficients is 1. Z(L) is the
integrated node-embedding matrix obtained after the L-th
iteration.

③ Integrated node-embedding matrix aggregation
Multiple integrated node-embedding matrices are obtained

after L times iteration, which can be represented as
{Z(1),Z(2), . . . ,Z(L)}. According to the previous description,
the node-embedding matrix obtained from the l-th iteration
mainly reflects the aggregation results of the l-hop neighbor-
hood of each central node. To fully exploit the information of
each hop neighborhood of the central node, we concatenate
the results of each layer to obtain a single embedding matrix,
which contains more useful information than only use the last
layer result. The concatenation result is showed as follows:

Z = [Z(1)||Z(2)|| . . . ||Z(L)] (8)

We hence homeopathically get the final embedding vector of
each node from Z.

4) GENERATE EDGE EMBEDDING VECTORS
After obtaining a pair of target nodes vi and vj, with their
corresponding node embedding vectors zi and zj, an edge gen-
eration strategy is constructed to determine the edge existence
of the target node pairs:

ri,j = Edge(zi, zj) (9)

where Edge(·, ·) is the function to obtain the edge vector
between target node pair vi and vj (e.g. hadamarD product,
summation, concatenation and some other operators). ri,j is
the edge embedding vector of the edge between the target
node pair.

5) CALCULATE THE PROBABILITY OF EDGES
After obtained the edge embedding vector between two target
nodes, a decoder is defined to calculate the probability of the

existence of the corresponding edge:

ŷi,j = σ (Wri,j + b) (10)

where W is a parameter matrix, and b is a bias. Because the
existence of the edge (i.e. gene-gene interaction prediction)
is a binary classification task, sigmoid function is chosen as
the activation function σ .
For model training, the binary cross-entropy loss function

is used to optimize the model parameters:

L =
∑

(i,j)∈V×V

−yi,j log ŷi,j − (1− yi,j) log(1− ŷi,j) (11)

where yi,j is the true label for the target nodes vi and vj that
are sampled during training via mini-batching.

D. EVALUATION METRICS
Accuracy (ACC), precision (PRC), recall, AUROC and
AUPRC were used to fully evaluate all different methods.
They are described in Supplementary Note 1.

E. EXPERIMENT AND PARAMETER SETTINGS
In the experiments, the edges in GRNdb were used as pos-
itive samples. For negative edge set, we randomly selected
node pairs to construct negative edges and ensured that the
intersection of positive and negative edge set is empty. As a
result, we obtained positive and negative edges of the same
number to compose the label set with 99052 edges. For all
label edges, we selected different randomized seeds 10 times
to reduce the randomness of the results, and for each dataset
partition, we randomly sampled 60% of them as the training
data, 20% as the validation data and the rest 20% as the test
data. The average value of each type of evaluation was used
as the final result.

All algorithms were run on a sever with an AMD
Ryzen Threadripper 3990X 64-CORE 2.90 GHz CPU, a
192GB RAM and a NVIDIA TITAN RTX GPU. The hyper-
parameter search spaces are: the learning rate of Adam
optimizer in [0.01, 0.005, 0.001], dropout rate in [0.1, 0.2, . . . ,
0.9], number of layers in [1, 2, . . . ,10], mini-batch size in
[64, 128, 256, 512, 1024, 2048], multi-omics weighted coef-
ficients in [0.1, 0.2, . . . , 0.9]. Each model was trained with
grid search to determine the optimal parameters. The optimal
parameters of our framework are shown in Supplementary
Note 2.

III. RESULTS AND DISCUSSION
There are three group experiments in this section: A) the
verification of the performance of phMFGCN compared with
other methods including results of gene-gene interaction pre-
diction task and robustness to sample size; B) investigation of
phMFGCN including effect of different omics data, effect of
hyper-parameter αi, ablation study, and effect of model depth;
C) the generalized applications of phMFGCN to predict novel
gene-gene interactions and gene functions.
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Algorithm 1 The Algorithm of phMFGCN Framework
Input: adjacency matrices with added self-loop

ÃGE , ÃME , . . . , ÃMU

normalized node feature matrices

XGE ,XME , . . . ,XMU

Feature transformation with MLP network:

H(0)
GE ← Feature Transformation(XGE ) via (4)

H(0)
ME ← Feature Transformation(XME ) via (4)

. . .

H(0)
MU ← Feature Transformation(XMU ) via (4)

Calculate the normalized graph Laplacian matrices:

L̃GE = LaplacianNormalize
(
ÃGE

)
L̃ME = LaplacianNormalize

(
ÃME

)
. . .

L̃MU = LaplacianNormalize
(
ÃMU

)
Neighborhood aggregation and progressively helical multi-omics data fusion
strategy:
For l = 0, 1, 2, 3, . . . , L do:

H(l+1)
GE ← FeatureFusion(L̃GEH

(l)
GE , L̃MEH

(l)
ME , . . . ,L̃MUH(l)

MU ) via (6)

H(l+1)
ME ← FeatureFusion(L̃GEH

(l+1)
GE , L̃MEH

(l)
ME , . . . ,L̃MUH(l)

MU ) via (6)

. . .

H(l+1)
MU ← FeatureFusion(L̃GEH

(l+1)
GE , L̃MEH

(l+1)
ME , . . . ,L̃MUH(l)

MU ) via (6)

Z(l+1)
= ContributionAllocation

(
H(l+1)
GE , . . . ,H(l+1)

MU

)
via (7)

Z = concat
(
Z,Z(l+1)

)
via (8)

Construct the edge embedding vector between target nodes vi and vj:

ri,j = EdgeGeneration(zi, zj)via (9)

Calculate the probability of the existence of edges between vi and vj:

ŷi,j = Decoder(ri,j)via (10)

Calculate the loss L with the probability ŷi,j and the true label y, then update the
model parameters via gradient descent algorithm.

L = LossFunction
(
yi,j, ŷi,j

)
via (11)

A. THE VERIFICATION OF THE PERFORMANCE OF
phMFGCN
1) RESULTS OF GENE-GENE INTERACTION PREDICTION
TASK
In this part, we aim to compare phMFGCN with several
types of representative machine learning methods using
three-omics data (GE, ME, and MU): XGBoost-AD [39]
(eXtreme Gradient Boosting and autoencoder), Node2vec,
MVGCN [14] and GCN-Cox [26]. These models are imple-
mented with Pytorch [40]. ACC, PRC, Recall, AUROC and

AUPRC are used to evaluate the performance of gene-gene
interaction prediction of these methods. We tuned hyper-
parameters for all models individually, and all performance
data were recorded under the most optimal parameters of the
models. The results of different methods are shown in Table 1.

According to the results listed in Table 1, because
Node2vec only utilizes graph structure information and
XGBoost-AD only exploits node features, they are two meth-
ods with the worst performance, which indicates that model
using single data type (graph structure or node features) can
only obtain limited performance. For the three GCN-based
methods, however, because of combining graph topology and
node features simultaneously, their performances are gener-
ally better than the first two methods.

Three GCN-basedmodels differ in the way of fusionmulti-
omics data, which determines their ability to capture the
complex relationship among different omics data. MVGCN
uses a regular fusion strategy whose embedding matrices
of each omics data are derived by basic GCN and then are
concatenated to an integrated matrix; GCN-Cox generates
a graph for each sample, and the node feature is formed
by splicing each omics data of the sample. Then the omics
information is fused together through GCN, which abandons
concatenation but only focus on feature matrix fusion. For
phMFGCN, the fusion of omics information is implemented
through progressively helical fusion strategy within GCN
layers, so that the fusion of topological structure and feature
matrices can be considered simultaneously. The results show
that phMFGCN performs best in all performance metrics,
which proves that our fusion strategy is effective and potential
to address the challenge of extracting features and catching
the underlying multi-omics data association.

2) THE ROBUSTNESS TO SAMPLE SIZE
In this part, aiming to explore the performance of our frame-
work in bad data quality (e.g. small sample size), we com-
pared the performance of phMFGCN and other GCN-based
models with different training sample sizes. Each model was
trained with [30%, 40%, 50%, . . . , 90%] of the original train-
ing set. In this experiment, ACC and AUROC were used as
the performance evaluations. The results are shown in Fig. 2.
It is obvious that the performance of all types of mod-

els decreases with the decreases of sample size. However,
phMFGCN outperforms other methods and the test ACC
and AUROC decrease more slowly than other models with
any training percentage. When training percentage >= 50%,
the ACC and AUROC values of phMFGCN almost do not
decrease while the ACC and AUROC values of both GCN-
Cox and MVGCN show a significant decline (decreased by
7.36% and 5.16% compared to the highest ACC, decreased by
7.47% and 6.69% compared to the highest AUROC). When
training percentage <= 40%, the ACC and AUROC of phM-
FGCN are still above 90% (ACC = 90.95% and AUROC =
92.29% when training percentage= 30%), whereas the ACC
and AUROC values of GCN-Cox and MVGCN are all lower
than 87% (ACCCOX = 84.20% and ACCMVGCN = 79.41%,
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TABLE 1. Comparison with other machine learning methods.

FIGURE 2. (a) The ACC comparison on phMFGCN and other GCN-based models in different training
percentages (%). (b) The AUROC comparison on phMFGCN and other GCN-based models in different
training percentages (%). phMFGCN outperforms other methods and the test ACC and AUROC decrease
more slowly than other models with any training percentage.

AUROCCOX = 86.29% and AUROCMVGCN = 80.98% when
training percentage = 30%, respectively). The above results
indicate that our framework is not sensitive to sample size and
potential to overcome the problem of bad data quality.

B. THE INVESTIGATION ON phMFGCN
1) THE EFFECT OF DIFFERENT OMICS DATA
To explore the impact of different omics data or omics combi-
nations on model performance, we carried out the following
experiments:

①Basic GCN with only GE data.
②Basic GCN with only ME data.
③Basic GCN with only MU data.
④phMFGCN with GE and ME data.
⑤phMFGCN with GE and MU data.
⑥phMFGCN with ME and MU data.
⑦phMFGCN with GE, ME, and MU data.
It can be found that the performance of phMFGCN

increases with the number of used omics data types. When
using single-omics data, the best ACC of our framework is
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FIGURE 3. The effect of hyper-parameter αi in phMFGCN. With the increase of αGE , the test ACC
of phMFGCN basically shows an upward trend. When αGE = 0.6, αME = 0.3, and αMU = 0.1,
phMFGCN obtains the best ACC 0.9794.

94.09%, however, when two omics data are used, the best
ACC and worst ACC of phMFGCN are 97.84% and 97.27%,
respectively, which are much bigger than the best ACC of
phMFGCNwith single-omics data. The optimal performance
is obtained when the framework is trained with three-omics
data, and the best ACC value is 97.94%.

The above results confirm that multiple omics data indeed
outperform single-omics data, and the performance signif-
icantly improves as the number of omics data increases.
It indicates that different omics data contain complementary
information and phMFGCN has the ability to capture such
complementary information.

2) THE EFFECT OF HYPER-PARAMETER αI
The hyper-parameters in our study are purposed to mea-
sure the contribution of different omics features. In this
part, experiments were carried out in phMFGCN with GE,
ME and MU data, so the corresponding hyper-parameters are
αGE , αME and αMU . Keeping αGE + αME + αMU = 1 and
using grid-search method to find the optimal parameters. The
results of ACC in different hyper-parameters are shown in
Fig. 3. It can be found that in phMFGCN the best ACC is
0.9794, which is obtained when αGE = 0.6, αME = 0.3, and
αMU = 0.1. Additionally, when αGE >= 0.5, the lowest ACC
value is 0.9762, which is bigger than the ACC values in most
cases when αGE < 0.5. The above results indicate that GE
data contributed more thanME andMU data to the gene-gene
interaction prediction task and our framework is able to pay
right attention to the contributions of different omics data.

3) ABLATION STUDIES ON PHMFGCN
To investigate the contributions of different components of
phMFGCN, we carry out ablation studies on phMFGCNwith
different components. The results are shown in Table 3.

(a)Without multi-omics feature fusion in progressively
helical multi-omics data fusion strategy, using H(l+1)

GE =

σ (L̃GEH
(l)
GE ), . . . , H

(l+1)
MU = σ (L̃MUH

(l)
MU ) to replace it.

(b)Without multi-omics contribution allocation.
(c)Without integrated node embedding matrices aggrega-

tion, only using the node embedding matrix derived from the
last layer.

(d)Without decoupling. The equation of phMFGCN with-
out decoupling (PWD) is shown in Supplementary Note 3.

It can be found from Table 3 that the complete phMFGCN
gets the best performance, while study (a) gets the worst
performance whose ACC is 2.16% lower than that of phM-
FGCN. This significant performance difference indicates the
importance of our multi-omics feature fusion in the whole
framework. As shown in study (b), compared to the complete
phMFGCN, ACC decreases by 0.62% without omics alloca-
tion strategy. Since different omics has different contribution
to the target results, it is necessary to allocate different omics
data different weight to measure their contribution, which is
also proven in the previous section. The ACC of Study (c)
is 0.67% lower than that of phMFGCN, which illustrates that
the information of integrated node-embedding matrix derived
from the last layer is not as sufficient as that from phMFGCN.
As shown in study (d), its performance is 0.33% lower than
that of phMFGCN, which demonstrates that in two layers
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TABLE 2. The performance of different models with different omics data or omics combinations.

TABLE 3. The results of ablation studies on phMFGCN with different components.

(small model depth), the GCN-based model has begun to
exhibit slight entanglement. It demonstrates the necessity of
decoupling operation.

4) THE EFFECT OF MODEL DEPTH IN PHMFGCN
Theoretically, more steps neighborhood aggregation (i.e.
large layer numbers or large model depth) from the central
node can enable itself to aggregate information in bigger hop
neighborhood.

However, in traditional GCN, large model depth does
not always lead to better performance, it may cause over-
smoothing problem and lead to poor performance. In practice,
it is difficult to know the optimal model depth of the predic-
tion task in advance, so the model should have the ability
to run on a large model depth and determine the optimal

depth, which is also the difference between phMFGCN and
traditional GCN.

To explore the effect with different model depth, wemainly
compared the ACC and AUROC in gene interaction pre-
diction task with phMFGCN, phMFGCN without decou-
pling, GCN-cox, MVGCN under different layer numbers.
The results are shown in Fig. 4. Fig. 4 indicates that all
models obtain the best test ACC and AUROC in 2 lay-
ers. Starting from the third layer, the ACC and AUROC
decrease to different levels. However, in the case of decou-
pling, phMFGCN can be applied to a larger model depth.
It achieves the best ACC and AUROC in 2 layers and
the worst ACC and AUROC in 10 layers (△ACCphMF =

97.94% - 96.14% = 1.80%, △AUROCphMF = 99.39% -
97.02%= 2.37%), whereas the performance of other models
gets seriously degraded as the receptive field or the depth of
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FIGURE 4. (a) The ACC comparison on phMFGCN and other GCN-based models with different model depth. (b) The
AUROC comparison on phMFGCN and other GCN-based models with different model depth. phMFGCN has the best ACC
and AUROC at any depth and can alleviate over-smoothing problem.

model increasing (△ACCPWD = 97.61% - 88.32% = 9.29%,
△ACCCox = 97.57% - 91.25% = 6.32%, △ACCMVGCN =

95.66% - 84.15% = 11.51%; △AUROCPWD = 99.22% -
91.03% = 8.19%, △AUROCCox = 99.30% - 91.77% =
7.53%, △AUROCMVGCN = 98.76% - 85.43% = 13.33%).
Obviously, the decoupling operation in phMFGCN signifi-
cantly delays the decline of performance with the increasing
of model depth, which indicates that phMFGCN takes effect
in alleviating the over-smoothing problem.

C. THE GENERALIZED APPLICATIONS OF phMFGCN
1) NOVEL GENE-GENE INTERACTION PREDICTION
In fact, the purpose of gene-gene interaction prediction task
is to predict the existence of unknown interactions in original
graph. In this experiment, we used phMFGCN to calculate the
probability of unknown interactions. We ran the phMFGCN
10 times and take the average value of ten probabilities of

each gene pair as the final score of edge existence. Then the
gene pairs with highest scores were picked and sent to the
literature database to see whether there is evidence to support
their existence. Among the top 8000 (about 0.1h) gene-gene
interactions we predict: 464 pairs of gene interactions are
found in BioGrid [41], 22 pairs in Trrust V2 [42], and 20 pairs
in RegNetwork [43].

Additionally, we chose the novel edges with high scores
to form the gene interaction network, then the degree of
each gene in the network was calculated. We selected the top
50 genes with the highest degree as hub genes. In order to
explore the biological function of the hub genes derived by
predicted edges, the KEGG pathway analysis was carried out
on these hub genes. KEGG explains the hub gene’s function
from the perspective of functional pathway. P< 0.01was con-
sidered statistically significant. The results of KEGG analysis
are shown in Fig. 5 and Table 4.
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FIGURE 5. The Sankey diagram of KEGG pathway analysis of 50 hub genes (p<0.01). These
50 predicted hub genes are mainly enriched in the following pathways: pathways in cancer,
transcriptional misregulation in cancer, cell cycle, non-small cell lung cancer, cellular senescence,
and thyroid hormone signaling pathway, which are closely related to the occurrence and
development of LUAD.

TABLE 4. The KEGG pathways of 50 hub genes.

These 50 predicted hub genes are mainly enriched in the
following pathways: pathways in cancer, transcriptional mis-
regulation in cancer, cell cycle, non-small cell lung cancer,
cellular senescence, and thyroid hormone signaling pathway,
which are closely related to the occurrence and development
of LUAD. Especially, senescence cells have been proven to
have immunogenicity and can promote anti-tumor immune
responses [45], whichmeans cellular senescence is a pathway
closely related to the development of LUAD. As for thyroid
hormone signaling pathway, Liu et al.’s research shows that
thyroid hormone stimulates cancer cell proliferation through
the imbalance of molecular and signal pathways [44], that
is, this pathway is also very likely to affect the occurrence
and development of LUAD by promoting the unlimited

proliferation of lung adenocarcinoma cells. According to the
above analysis, the 50 ‘‘Hub’’ genes involved in these regula-
tory pathways are important genes that directly or indirectly
regulate the development of lung adenocarcinoma, and they
may be key targets for gene diagnosis and treatment of lung
adenocarcinoma. In addition, this result is an indirect proof of
the reliability of our newly predicted gene-gene interaction,
and also indicates the practical value of our framework in
clinical practice.

2) GENE FUNCTION PREDICTION
We next explored the application of phMFGCN in the node
classification tasks. In this part, we mainly tested the perfor-
mance of phMFGCN in the task of gene function prediction.
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TABLE 5. A part of top predicted genes for LUAD-related GSEA pathways.

This was accomplished by searching functional gene sets
from GSEA, then these genes were considered as labeled
functional genes to participate in model training. To balance
the label sets, each gene in functional gene sets was set as
positive gene with label 1 and the same number of genes
were selected as negative genes with label 0. The negative
gene set selected strategy was as followed: Firstly, remove
positive sample genes from the whole gene set. Then, we cal-
culated Pearson correlation coefficient one by one between
remain genes and positive sample genes. Finally, we selected
a threshold and chose the same number of genes with the
correlation coefficient among each positive gene less than the
threshold to form a negative set. In this way, the negative
genes and positive genes have a low correlation, which is
suitable for negative sample selection rules. The threshold
value started from 0.1. If the number of negative sample genes
selected is not enough, the threshold value will be changed to
a little bit higher value.

We focused on studying three pathways selected from the
GSEA database that are closely related to the occurrence
and development of LUAD, namely Cell cycle, MAPK sig-
naling pathway, and P53 signaling pathway. The genes in
these pathways are considered as their corresponding func-
tional gene sets, with GE, ME, and MU data as the original
feature datasets. Perform node classification tasks on the
remaining genes separately to explore their correlation with
the corresponding functional gene set (pathway) and reveal
their gene functions. Table 5 show a portion of high scoring
predictive genes related to the LUAD KEGG pathway (the
top 10 genes with scoring rankings were selected from the
predicted results of each functional gene set, and due to space
limitations, only 5 predicted results for each pathway were
listed here). All these predictive results are supported by
existing research or literature, indicating that these genes are
involved in or regulate corresponding pathways. This proves
the excellent performance of our phMFGCN framework in
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node classification tasks, which is also the result of its perfect
integration of multiple omics data information.

Through the results of the above table, we can find that
Sam68, DHX9, and HNRNPK are simultaneously involved
in regulating the cell cycle pathway and P53 signaling path-
way, which further reveals their close relationship with the
occurrence and development of cancer. It is worth conducting
medical experiments to further explore their properties and
functions, which may provide important reference value for
the corresponding cancer gene diagnosis and treatment and
the development of targeted drugs.

IV. CONCLUSION
In this paper, we proposed a novel GCN-based framework
phMFGCN to overcome the difficulties in multi-omics data
fusion, which consists of: 1) construct an initial graph; 2)
decouple; 3) integrate multi-omics data with progressively
helical multi-omics data fusion strategy; 4) generate edge
embedding vectors; 5) calculate the probability of edges.
In gene-gene interaction prediction task, phMFGCNachieved
the best test results in widely used evaluation metrics when
compared with other machine learning models. phMFGCN
also acquired superior performance in predicting novel gene-
gene interactions and some prediction results were supported
by existing research and literatures. Additionally, in func-
tional gene prediction task, the top genes that phMFGCN
predicted were authentically closely related to or participate
in regulation of their corresponding GSEA pathway. Under
various tasks and experimental conditions, phMFGCN per-
formed well, which showed the effectiveness and progress of
our framework in addressing the challenges of multiple omics
data integration.

In the future, with the increasing development of multi
omics sequencing technology, the types of multi omics data
will become more diverse, and our framework has the poten-
tial to integrate these omics data and provide reliable guid-
ance for clinical practice. Additionally, our framework can be
further extended to more complex diseases and clinical tasks
to make greater contributions in biomedical applications.

SUPPLEMENTARY MATERIALS
Supplementary Note 1: Evaluation metrics.

Supplementary Note 2: Optimal parameters.
Supplementary Note 3: The multi-omics feature fusion

equation of phMFGCN without decoupling.
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