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Abstract: Structural aberrations (SA) have been shown to play an essential role in the occurrence
and development of cancer. SAs are typically characterized by copy number alteration (CNA) dose
and distortion length. Although sequencing techniques and analytical methods have facilitated
the identification and cataloging of somatic CNAs, there are no effective methods to quantify SA
considering the amplitude, location, and neighborhood of each nucleotide in each fragment. Therefore,
a new SA index based on dynamic time warping is proposed. The SA index analysed 22448 samples
of 35 types/subtypes of cancers. Most types had significant differences in SA levels ranging between
12p and 20q. This suggests that genes or inter-gene regions may warrant greater attention, as they can
be used to distinguish between different types of cancers and become targets for specific treatments.
SA indexes were then used to quantify the differences between cancers. Additionally, SA fingerprints
were identified for every cancer type. Kidney chromophobe, adrenocortical carcinoma, and ovarian
serous cystadenocarcinoma are the three severest types with structural aberrations caused by cancer,
while thyroid carcinoma is the least. Our research provides new possibilities for the better utilization
of chromosomal instability for further exploiting cancer aneuploidy, thus improving cancer therapy.

Keywords: structural aberration; copy number alteration; pan-cancer

1. Introduction

Malignant cells rapidly acquire somatic structural aberrations during proliferation,
creating intratumor genetic heterogeneity within the population [1,2]. Structural aberration
(SA) refers to the ongoing acquisition of genomic alterations involving either a gain or loss
of whole chromosomes [3]. SA is considered a significant type of chromosomal instability
(CIN). Another major type of CIN is tumor mutation burden (TMB). Both constitute CIN,
which has been proven to underpin much of the intratumoral heterogeneity observed in
cancers and drives phenotypic adaptation during tumor evolution [4,5]. Additionally, it
has been confirmed that immune features and SA define the most mixed tumor groups [6].
Research on SA may be of great help in the diagnosis of cancers of an unknown primary
site (CUP) [6,7], given the fact that even after a complete assessment including immunohis-
tochemistry markers, the identification of the tissue of origin is still a challenge [8–10].

Because SAs are typically characterized by both the CNA dosage (corresponding to
duplications and deletions) and aberration length (typically measured in base pairs (bp) or
kilobase pairs) [11], it is difficult to quantify how severe a SA is in a given region, which
makes it difficult to conduct any quantitative analysis in SA-related research. For example,
although TMB is only one major form of CIN, it has frequently been used to quantify CIN
levels. Regarding TMB, however, the mutation frequency and count is the two most widely
used measurements [12–15]. Unfortunately, the significant mutation genes identified using
the mutation count or frequency tend to be long because of their prominence in the sequence
length. Moreover, regardless of how many nucleotides are in an insertion or deletion, it is
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only counted as one mutation without considering its sequence information. Therefore, it
is evident that TMB is a highly biased quantifying measure of CIN.

Nonetheless, the high cost of TMB detection limits its use in clinical practice [16,17].
There is a great need for a new method, using only copy number data, for quantifying
structural variations in length and amplitude to quantify CIN accurately. Copy number
data can be obtained using DNA-based tests, which are more robust when applied to
formalin-fixed paraffin-embedded tissues.

Therefore, a new normalized SA index based on dynamic time warping is proposed
to quantify global structural variations of somatic CNA profiles for segments. Further-
more, by treating variations in chromosomal sequences as time sequences, the variation
length and amplitudes of variation in each nucleotide and the overview “waveform” can
be considered.

To demonstrate the usage of our new SA index, 22,448 samples of 35 types/subtypes
of cancers downloaded from The Cancer Genome Atlas (TCGA) were analyzed. Their
structural aberration fingerprints were identified by analyzing their corresponding SA
indexes arm by the arm. The molecular distance was also calculated using genome SA
indexes from the perspective of the somatic copy number alteration (SCNA).

By filling the gap in the quantification of global structural variations and mutations, it is
possible to use data-driven methods to progress CIN-related research further. Additionally,
in combining the SA index with methylations, other features and appropriate machine
learning methods, the ultimate goal is to move beyond correlation and classification to
achieve new insights into disease mechanisms and treatment targets.

2. Materials and Methods
2.1. Data Preprocessing

TCGA “https://portal.gdc.cancer.gov/projects (accessed on 29 May 2021)” is a landmark
cancer genomics program that has molecularly characterized approximately 20,000 primary
and non-malignant samples spanning 33 primary cancer types [18,19]. Considering that
TCGA is by far the most consistent platform in providing the most cancer types and data
testing methods, data from it was used in this study.

The CNA data were measured using the Affymetrix Genome-Wide Human SNP Array
6.0 platform and saved in TCGA “*. grch38.seg.v2.txt” files. In addition, simple Nucleotide
Variation (SNV) data of the whole-exome sequencing was measured with the MuTect2
Variant Calling Pipeline and saved in mutation annotation format (MAF) files. These were
used in our analysis.

The genes whose CNA data were missing in all samples were removed (132 removed
genes out of 24,995 genes, accounting for 0.53%). Moreover, due to our inability to conduct
a generalizing analysis on account of the shortage of data on chromosome Y, we removed
the genes from it. After removing the samples whose age was unknown, the remaining
samples varied from 18 to 90 years.

To ensure that the samples were as typical as possible, all non-primary samples
(including recurrent and metastatic tumor samples) were removed before analysis. This
meant only primary tumor samples (for LAML, Acute Myeloid Leukemia, and primary
blood) were used for analysis. For non-malignant samples, only blood-derived normal (for
LAML, solid tissue normal) samples were used. For this study, we separated oesophagal
carcinoma (ESCA) into esophageal adenocarcinoma (ESAD) and esophageal squamous cell
carcinoma (ESSC), respectively, and cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC) into cervical adenocarcinoma (CEAD) and cervical squamous cell
carcinoma (CESC), according to the provided clinical information. As a result, there were
22,448 tumor and non-malignant samples of 35 types/subtypes of primary tumors in our
study. The data are summarized in Table S1.

https://portal.gdc.cancer.gov/projects
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2.2. SA Index Based on the DTW Measure

To quantify how severe the structural aberrations of a certain segment (including focal
or local variations) are, here, a SA index based on the dynamic time warping (DTW) measure
is proposed. DTW is a widely used method for sequence/curve similarity quantification.
DTW is a sophisticated similarity measure that calculates an optimal match between
two given sequences (e.g., time series) with certain restrictions. It can be non-trivially
transformed. The sequences are “warped” non-linearly in the time dimension to determine
a measure of their similarity independent of certain non-linear variations. In chromosomal
signals, after representing the time instances by the nucleotide positions and amplitudes
by the corresponding CNA levels, the DTW measure is suitable for deriving mountain
plots of two CNA curves, denoted as mountain curves [20,21]. This means that the position
and order of the CNA points of genes/intergenic regions along chromosome arms can be
seen as sequences or curves. Consequently, the DTW measure can be used to quantify the
similarity between the mountain curves of any pair of samples, as shown in Equation (1):

Dk(i, j) = min[Dk(i− 1, j− 1), Dk(i− 1, j), Dk(i, j− 1)] + dk(i, j) (1)

Dk symbolizes accumulated distance, and dk is a pairwise distance value. The value of
accrued distance Dk(i, j) is determined by a pairwise distance dk(i, j) and the minimum of
the previous values of accumulated distances.

For a segment of a given tumor sample, if the mountain curve of the corresponding
non-malignant sample is used as the reference, Dk can then be sued to quantify how severe
the structural aberration in that segment is compared to its normal status. To put it simply,
for sample k, the SA index in a segment can be defined as:

SAIk = 1− Dk (2)

where SAI is normalized to the range <0, 1>. Here, ‘1’ means that the tumor mountain
curve is completely different from the corresponding non-malignant mountain curve, which
means that the structural aberration varies significantly from the non-malignant profile
due to tumour-related or other reasons. In contrast, ‘0’ means that the curves coincide with
each other (almost no difference between the tumor and non-malignant CNA profiles).

Note: A mountain curve can be obtained for an individual segment by sorting the
CNA values of genes along the nucleotide positions. A mountain curve can be obtained
for a group of separate segments by aligning the segments according to their chromo-
some/genome positions. Each spot represents the median/mean value of the CNAs of all
nucleotides in each sample segment or cohort group. A nucleotide, gene, or segment can
be treated accordingly as a spot for a mountain curve. This depends on the width covered
by the mountain curve and the scale of the granularity of the segment within it. Details on
the mountain curve are available in [20,21]. An example is provided in Section 3.1.

2.3. The exoTMB for 35 Different Types of Cancers

TMB is the simple nucleotide mutation counts per million bites [22]. Considering the
fact that research has shown that synonymous mutations frequently act as driver mutations
in human cancers [23], in our study, the exoTMB (including both nonsynonymous and
synonymous mutations) of each tumor sample’s exosome for each type of cancer was
calculated. Because only exome mutations are available in MAF files, only the exoTMB of
the exome was calculated, as follows:

exoTMBc =
|Nonsynonymous Mutation Counts + Synonymous Mutation Counts|

|ExonLength (MB)| (3)

where exoTMBc represents the nonsynonymous and synonymous mutation counts per
million bites in the exon length of the tumor sample for chromosome c, |Nonsynonymous
Mutation Counts + Synonymous Mutation Counts| represents the nonsynonymous and
synonymous mutation counts in the whole exons of chromosome c, and |Exon Length
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(MB)| represents the length of all exons in chromosome c, whose unit is a million bites. The
average exoTMB values for each arm and the corresponding length of the exons are shown
in Table S2. Detailed descriptions of the nonsynonymous and synonymous mutations are
available in Supplementary Note S2 [23–27].

3. Results
3.1. SA Index Values of 35 Different Types of Cancers and Their Molecular Distances from Each Other

To calculate a genome-wide SAI for a given type of cancer, it is necessary to create a
genome-wide mountain curve for each type of cancer arm-by-arm. Considering the large
number of genome-wide genes, a gene was treated as a segmentation. Intergenic regions
may be revealed to have essential functions; hence, it is essential to consider these regions.
The lengths of intergenic regions are normally several times those of genes. For example,
the average length of an intergenic region is 91,008 bps (without counting intergenic regions
at the centromere). It is almost three times the average length of a gene, which is 35,328 bps.
To obtain more precise genome-wide CNA curves, the following steps were carried out:

• If the length of an intergenic region was longer than 35,328 bps, it was divided into
several segments (the number of segments was the rounded-up number of the length
of the intergenic region compared with 35,328 bps).

• However, if the length of an intergenic region was shorter than 35,328 bps, it was
counted as one segment.

For example, if the length of an intergenic region was 52,992 (1.5 times 35,328), it
was divided into two segments of the same length. For each segment, the corresponding
CNA is the average value of the CNAs of all nucleotides. In this way, a gene or a segment
is represented as a spot, with its starting position as the X-axis value and its average
CNA in the cancer cohort as the Y-axis value. Examples of mountain curves of CNAs on
Chr3 of all the adenocarcinomas (ADCs) and squamous cell carcinomas (SCCs) are shown
in Figure 1 [20,21].
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Figure 1. Mountain curves of ADCs and SCCs for Chr 3. Each spot is the mean value of the copy
numbers of genes in the corresponding group. The genes are sorted according to their locations. The
space between the two arms of each chromosome is the location of the corresponding centromere.

Note: When calculating the SA index, our proposed method also took the CNA of the
intergenic region into account, which helps one to consider the structural aberration of the
whole chromosome fully.

Based on these mountain curves, each arm’s SA index was calculated to quantify the
structural aberrations in detail. Then, the chromosome-wide SA index was taken as the
summary of the arm-wide SA index values belonging to it. The genome-wide SA index
summarised all chromosome-wide SA index values (armSA, chrSA and geSA, respectively).
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Therefore, the range of armSA was <0, 1>, that of chrSA was <0, 2>, and that of geSA was
<0, 41> (as there are no genes on 13p, 14p, 15p, 21p or 22p).

Table S3 lists the arm-wide and genome-wide SA index values of all types of cancers
in the TCGA. Compared with the corresponding non-malignant samples, the genome-wide
structural variation of THCA (thyroid carcinoma) is the slightest (geSA = 0.07). Furthermore,
only Chr14 and Chr22 have minor aberrations among the non-malignant samples, whose
armSAs are 0.02 and 0.01, respectively. Figure S1 shows the mountain plot and directional
Manhattan plot of Chr22 [28]. It proves that the structural variation pattern of Chr22 is
significantly different but shows mild amplitude changes in the tumor samples compared
with the corresponding non-malignant samples. Additionally, the armSAs in the p arm
and the q arm of each chromosome in GBM (glioblastoma) are almost equal, reflecting the
symmetry of structural aberrations in GBM.

On the contrary, the geSAs of KICH (kidney chromophobe, geSA = 8.56), ACC (adreno-
cortical carcinoma, geSA = 5.67), and OV (ovarian serous cystadenocarcinoma, geSA = 5.06)
are the three most severe, which means that they have the most significant changes in
their genome-wide structural profiles caused by the tumor. Their corresponding mountain
curves are shown in Figure S2.

• Unlike other types of cancers, KICH always shows chromosome-wide deletions or
amplifications. Interestingly, no gains or deletions occur in the same chromosome.

• Except for 9p, Chr10, and 14p, ACC also shows arm-wide deletions and amplifications.
There are still no gains or deletions that occur in the same chromosome. However,
unlike KICH, there are mild fluctuations in these deletions or amplifications.

• Unlike KICH nor ACC, the fluctuation in OV is the greatest among all types of cancers.
In addition, there are dramatic fluctuations in almost all the arms except 9p and
21q. Therefore, OV is the most distinguishable due to its dramatic genome-wide ups
and downs.

The last row in Table S3 lists the standard deviation (STD) values of the corresponding
armSAs across all types of cancers. A larger STD means a comparatively larger difference
between the SAs of different types of cancers for the given arm. The STDs on 12p and 20q
are the largest, suggesting that the structural aberration profiles of different types of tumors
vary significantly at 12p and 20q. Genes or intergenic regions on these arms may be worth
greater attention from researchers because they may serve as new biomarkers for tumor
origin identification or cancer-specific treatment targets.

On 12p, TGCT (testicular germ cell tumor) shows the greatest variation compared
with the corresponding non-malignant samples, whose armSA is 0.55. The second largest
arm-wide SA index is 0.30 (the arm-wide SA index of ACC), much smaller than 0.55. This
may be considered as the fingerprint of TGCT, aiding in the original identification of CUP.
The mountain plots of five cancers possessing the largest SA index values on Chr12 are
shown in Figure S3. TGCT has the largest gain on 12p, making it significantly different
from the other types of cancers.

Besides 12p, 20q is the second most varied, with the cancers showing great differences
compared to the control group and one another. READ (rectum adenocarcinoma), COAD
(colon adenocarcinoma), ESAD, UCS (uterine carcinosarcoma), and KICH are the most
five varied types of cancers on this arm. Their corresponding mountain plot is shown
in Figure S4. The large amplicon between 20q11.1 and 20q11.21 may also be essential in
identifying UCS.

Additionally, UVM and UCS are both non-epithelial carcinomas (NEC). Neither UVM
nor LIHC has the MYC amplicon, even though it is well-attested in OV [29], BRCA [30,31],
and several other types of cancers [12]. Two amplicons are harbored in the area from
8q12.11 to 8q21.12, which may help distinguish UCS from other cancers (Figure S5).

On the contrary, 14q, 6q, 21p, 4p, 9q and 2q are the steadiest arms, with hardly any
aberration for all types of cancers. Consequently, these arms provide hardly any helpful
information for further structural-aberration-related research on cancer.
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3.2. Fingerprints of 35 Different Types of Cancers

Considering the arm-wide variations in all types of cancers, 0.1 (10% variation) was set
as the cutoff value. If an armSA ≥ 0.1, the corresponding arm-wide structural aberration is
considered significant compared to the super control group (the group of all non-malignant
samples of all types of cancers available in the TCGA); if an armSA < 0.1, it is considered
to be non-significant. The SA fingerprint of each kind of cancer was identified, and the
results are listed in Table 1. Because structural aberrations in these arms can be used
to distinguish them from one another, research on the initiation of their chromosome
instability, genes/intergenic regions, and so on may be of great importance in deepening
our understanding of tumor mechanisms or uncovering new targets.

Table 1. SA fingerprints of each type of cancer.

Cancer Signature CNV Profile *

Adenocarcinomas

BRCA 1q, 8q, chr16, 17p
CEAD 3q, 20q
CHOL 1q, 3p, chr5, 6q, 12p, 20q
COAD chr7, 8q, 13q, 17p, chr18, 20q
ESAD chr4, 5q, 7p, 8q, 9p, 17p, 18q, chr20, 21q, 22q
LUAD 1q, 5p, 7p, 8q, 17p

OV 1q, chr2, 3q, 4q, chr5, 6p, 7q, chr8, 10p, 11p, chr12, 13q, 15q, 16q,
chr17, chr19, chr20, 22q

PAAD /
PRAD /
READ chr7, chr8, 13q, 17p, chr18, 20q
STAD 8q, 20q
THCA /
UCEC /

Squamous cell
carcinomas

CESC 1q, 3q, 4p
ESSC chr3, 4p, chr5, 7p, 8q, 9p, 11q, 20q, 21q

HNSC chr3, 8q
LUSC 2p, chr3, 4p, chr5, 7p, chr8, 9p, 12p, 13q, 17p, chr20

Other epithelial
carcinomas

ACC chr1, chr2, 3p, chr5, chr7, 9p, chr11, chr12, 13q, 15q, chr16, chr17,
chr18, chr19, chr20, 22q

BLCA chr8, 20q

KICH chr1, chr2, chr3, chr4, 5p, chr6, chr7, chr8, chr9, chr10, chr11, chr12,
13q, 14q, 15q, chr16, chr17, chr18, chr19, chr20, 21q, 22q

KIRC 3p
KIRP chr7, chr16, chr17
LIHC 1q, chr8, 17p

Non-epithelial
carcinomas

DLBC /
GBM chr7, chr10

LAML /
LGG /

MESO 22q
PCPG 1p, 3q
SARC 5p, 13q, 16q, 20q
SKCM 1q, 6p, chr7, 8q, 9p, chr10, 20q
TGCT 1q, chr4, chr5, chr7, chr8, chr10, chr11, chr12, 13q, chr18, 21q
THYM /

UCS 1q, 2p, 5p, chr6, chr8, chr9, 15q, chr16, 17p, chr19, chr20
UVM chr3, 6p, 8q

* chr: both arms show clear aberrations at the same time.

Except for the PRAD (prostate adenocarcinoma), PAAD (pancreatic adenocarcinoma),
THCA (thyroid carcinoma), and UCEC (uterine corpus endometrial carcinoma) of ADCs
and the DLBC (lymphoid neoplasm diffuse large B-cell lymphoma), LAML (acute myeloid
leukemia), LGG (brain lower-grade glioma) and THYM (thymoma) of non-epithelial carci-
nomas (NEC), the other 27 types of cancers have unique SA fingerprints. For example, the
SA fingerprints of READ consist of chr7, chr8, 13q, 17p, chr18 and 20q, shown in Figure S6.
Therefore, if and only if a sample shows broad variation in the copy numbers for these
chromosomes simultaneously, it may be a READ tumor sample.
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To prove the validity of the cancer fingerprints we identified, we downloaded HNSC
data from the GEO database (GSE103322). In addition, we obtained LUSC data from [32],
and we then performed an analysis with these data as the control. The comparative
results are shown in Table S4. It can be seen that the SA fingerprints obtained with these
new data are almost consistent with the original results (only the fingerprint of 7p in
LUSC is different, but the difference in the SA index values between the two is very
small), which demonstrates the effectiveness of our method and enhances the credibility of
SA fingerprints.

In addition to the fingerprints of all types of cancers listed in Table 1, there are some
profiles worth mentioning. From the bee swarm plots for the geSAs of four cancer categories
(ADC, SCC, NEC, and OEC) shown in Figure 2, it can be seen that the geSAs of the OECs
(consisting of six types of cancers) present the greatest difference from each other. The
corresponding geSAs range from 0.85 to 8.56 (the gap between the maximum and minimum
is 7.71). On the contrary, the SCCs only consist of four cancer types, and their SA index
values range from 1.36 to 3.28. From the average geSA of each category of cancer, it can
be concluded that the structural aberration patterns of ADCs and OECs fluctuate more
violently than those of SCCs and NECs. Additionally, two of the most varied cancers (KICH
and ACC) belong to the category of OECs.
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carcinoma, other epithelial carcinomas, and non-epithelial carcinomas).

According to the armSA results of all the ADCs and SCCs shown in Table S3, we can
see the significant difference in the CNA patterns of the ADCs, as one kind, and the SCCs,
as another, occur on 3q. Almost all the SCCs have large arm-wide amplifications on 3q;
however, the ADCs (except for OV) have only mild amplifications. We can also see that
only the SCCs have common aberrations on chr3, 5p and 20q. The other cancer categories
do not have any aberration in common.

According to the definition of the SA index, the length of deletion or amplification is
more significant than its amplitude. For example, Figure S7 shows mountain curves of 14q
and 17p for UCS. Even with the enormous focal amplicons on 14q, its armSA is 0.07. On
the contrary, the armSA of 17p is 0.19, and here, there is an arm-wide amplification with
a much smaller amplitude. This example shows that the aberration length does play an
essential role in the SA index value. Indeed, the SA index value considers both the copy
number alteration and aberration length. Considering the fact that, in practice, it is more
often the case that false focal amplicons or deletions are observed in a single sample rather
than false arm-wide broad alterations being detected due to noise inherent in the data,
broad-signature SAs are more practical and ascertainable.
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Focal deletions on 9p21.3, where CDKN2A/B is located, are well-attested in GBM,
LUAD and LUSC [14]. Figure 3 shows ESSC and LUSC in the SCCs, CHOL, PAAD, LUAD,
and STAD in the ADCs, BLCA in the OECs, and GBM, SKCM, and MESO in the NECs
all have CDKN2A/B focal deletions. Among them, GBM shows the greatest deletion,
followed by SKCM. The relationship between these primary tumors may be worthy of
further research. Another two well-known genes, CD274 (the coding gene of PD-L1,
programmed death-ligand 1, the main immune checkpoint) and JAK2 (9p24.1) are also
located in this area. The amplification of both of these genes has recently been described in
pulmonary carcinomas in association with PD-L1 expression [33,34]. However, Figure 3
and Figure S8 show that only a tiny percentage of these samples show copy number
amplifications consistent with the published results [35]. For comparison, the bee swarm
plot of PDCD1 (the coding gene of PD-1, programmed death receptor 1) is also shown at
the bottom of Figure S8.

Figure 3. Mountain plot of 9p with CDKN2A/B focal deletions. Each spot is the mean copy number
of genes in the corresponding group. The genes are sorted according to their locations. For example,
the mean values of CNV of CD274 (the coding gene of PD-L1) and JAK2 for each type of cancer are
highlighted with orange triangles.

COAD and READ are always combined because of the relationship between their
tissues of origin. In Table S3, we find that across the whole genome, their SA patterns have
the same trend. However, whenever COAD has copy number variations, READ has larger
ones, except for Chr2, 3p, 12q, 20p and 21q. According to the deflection plot (shown in
Figure S9), across the whole genome (data are not shown), only the SA patterns on 18q
and 20q are significantly different from each other. COAD has significantly less loss on
18q and less gain on 20q compared with READ. The gain on 20q of READ and COAD has
previously been identified [36,37].

4. Discussion

As mentioned above, somatic structural aberration is a major form of chromosomal
cancer instability observed in most solid tumors and is associated with poor prognosis and
drug resistance. However, the mechanism underlying CIN in cancer remains unclear [34].
In part, this may be because there is no effective quantifying method for SA profiles,
which hinders the ability of statistical methods, machine learning, and other mathematical
methods to assist in research on this mechanism. Moreover, as an important biomarker,
TMB plays an essential role in response to immune checkpoint inhibitor therapy for most
cancers. Figure 4 shows the Nightingale rose diagrams of 20 types of cancers with the top
SPCCs (Spearman’s correlation coefficients) between their SA index values and exoTMBs,
both arm-wide and genome-wide. SPCC is used to quantify both linear and non-linear
relationships between SA index values and exoTMBs. Additionally, Table S5 lists the SPCCs
between genome-wide and arm-wide SA index values and exoTMBs (including synony-
mous and nonsynonymous) for all 35 types/subtypes of cancers. However, according to
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these results, it is clear that there is hardly any linear/non-linear relationship between
the CNA and exoTMB. Since both a structural aberration and mutation are major parts of
CIN, it is not reasonable to use only TMB to evaluate how severe the CIN is for a given
sample. This also shows the necessity and importance of quantifying the degree of SA
from the global point of view of a given segment (i.e., an arm, a chromosome, or even the
whole genome).
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Figure 4. Nightingale showed SPCCs between SA index values and exoTMBs, both arm-wide and
genome-wide, for 20 types of cancers. The table in Figure 4 shows the top 3 SPCCs (the table is sorted
by absolute value and shows the arm with the strongest correlation between the SA index value and
exoTMB for each cancer).

Although there was not a strong relationship between the exoTMB and SA index
values among any of the types of cancers, there were still some interesting points. Table
S5 shows that the arm-wide SPCCs of BRCA, LUAD, and PRAD are all positive, which
means that a larger SA index value (a much more severe alteration between the tumor
and non-malignant SA profiles) might lead to an increased exoTMB. On the contrary, for
COAD and UCEC, their arm-wide SPCCs are negative, which indicates that in these two
cancers, the tremendous alteration in structure might cause a reduction in exoTMB. More
significantly, except for 1q, 5p, and Xp, the SPCCs of the other arms in UCEC show slight
negative correlations between the armSA and exoTMB (SPCC < −0.3, p < 0.0001). For BLCA,
PAAD and SARC, there are only a few arms with negative SPCCs (BLCA Chr9, PAAD 9p
and 16p, and SARC 10p). As for the rest of the cancer types, they all have several arms
with significant SPCCs. For example, for DLBC, the SPCC of 6p is 0.5760 (p < 0.0001),
and the SPCCs of ESAD for 17q and 19p are 0.3815 and −0.4908 (p < 0.0001), respectively.
These features suggest a correspondence between the armSA and arm-wide exoTMB for
each cancer; therefore, the SA index abnormality of some typical arms in certain cancers
may correspond to a specific exoTMB. As for the correlation between the geSA and whole-
exome exoTMB, the SPCCs of PAAD (SPCC = 0.5518, p < 0.0001) and PRAD (SPCC = 0.5881,
p < 0.0001) show a high level, which may reveal the potential of geSA to replace exoTMB as
a biomarker for immune checkpoint inhibitor therapy. A description of the calculation of
SPCC is provided in Supplementary Note S3.

Returning to the SA index, Table S3 lists the arm-wide and genome-wide SA index
values of all types of cancers available in the TCGA. Molecular similarities between his-
tologically or anatomically related cancer types provide a basis for focused pan-cancer
analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous
analyses and those pertaining to stemness features, which, in turn, may inform strategies
for future therapeutic development [38]. Our SA index provides a quantification method
based on structural aberrations when taking a cancer cohort as a group. The SA index can
also quantify the severity of structural aberrations for an individual sample.



Symmetry 2023, 15, 1023 10 of 15

More importantly, the molecular fingerprint based on the SA index value, unique to a
specific type of cancer, may provide new insight into cancer initiation and development. In
turn, it may also inform strategies for future therapeutic development. Therefore, this study
represents the largest high-resolution structural aberration profiles generated by a single
platform and the first large-scale analysis of absolute copy number data across pan-cancer
types. First, we identified the fingerprint SA patterns of these types. Then, we quantified
their molecular differences to provide the first comprehensive overview of the molecular
factors that distinguish different neoplasms in the TCGA. The corresponding mountain
plots of the signature CNAs of READ, ESSC, BLCA, and GBM in different cancer categories
are shown in Figures S6 and S10–S12, respectively. Others may easily be created using the
web tool provided by us “https://www.clickgenome.org/ (accessed on 10 August 2021)”.

Although structural aberration is only part of CIN or only one aspect of profile genomic
variation, methylations, mutations, and mRNA expressions have all been shown to have
more direct relationships with cancer mechanisms and treatment targets. Therefore, using
only the SA index should not be enough to provide completely satisfactory outcomes. The
following examples using the arm-wide SA indexes of the samples as variables still prove
that the SA index can extract helpful information for CIN-related research. It is reasonable
to assume that with mRNA expressions and other genomic profiles, more breakthroughs in
cancer research may be achieved in the near future.

To test whether SA indexes are clinically related to the survival of tumor patients, a
multivariate Cox-regression-model-based survival analysis using the arm-wide SA indexes
of individual samples of 35 types of cancers was carried out. Then, the samples for each
cancer type were divided into high-risk and low-risk groups according to the median of the
risk scores across all individuals. The corresponding Kaplan–Meier (KM) survival curves,
with log-rank test values, are shown in Figure 5.
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It can be seen that 41 arm SA indexes show a high relation to survival risk for 19 out of
the 35 types of cancers with a hazard ratio HR > 1, being statistically significant (p < 0.05).

Additionally, to evaluate the diagnosis/classification performance of arm SA indexes,
pan-cancer classification tasks were undertaken for the ADC, NEC, OEC, and SCC tumor
samples, together with their 41 arm SA indexes, using eXtreme Gradient Boosting (XG-
Boost) [39]. The sample sizes of CHOL, CEAD, and ESAD in ADC, of UCS, UVM, MESO
and SKCM in NEC, and of ESSC in SCC were small, and they were not considered. Of these
valid samples, 80% were randomly assigned to the training set, and 20% were assigned
to the testing set. The classification confusion matrices and ACC results are shown in
Figure 6 and Table 2, respectively. In the model based on the 41-arm SA indexes, most
cancer types have a high classification accuracy (≥95%). In particular, for TGCT in NEC,
the classification accuracy is up to 100%. Overall, the diagnosis/classification performance
of the arm SA indexes is excellent.
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Figure 6. The confusion matrix results obtained using 41 armSA index values. (A) The confusion
matrix of ADC. (B) The confusion matrix of NEC. (C) The confusion matrix of OEC. (D) The confusion
matrix of SCC.

Table 2. The classification ACC results of each cancer type obtained using 41 armSA index values.

ACC

ADC

BRCA 0.91

NEC

GBM 0.94

OEC

ACC 0.96

SCC

CESC 0.92
COAD 0.97 LAML 0.96 BLCA 0.90 HNSC 0.95
LUAD 0.93 LGG 0.90 KICH 0.97 LUSC 0.90
OV 0.96 PCPG 0.97 KIRC 0.98

PAAD 0.98 SARC 0.95 KIRP 0.93
PRAD 0.95 TGCT 1.00 LIHC 0.90
STAD 0.94 THYM 0.96
THCA 0.96
UCEC 0.93
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5. Conclusions

In this article, we proposed a new SA index based on DTW for quantifying the severity
of SAs for given segments considering both the length of the segments and the CNA
amplitudes of the genes. By analyzing their corresponding SA indexes arm-by-arm, we
identified the structural aberration fingerprints of 35 types/subtypes of cancers. Different
cancer types have different fingerprints; thus, SA fingerprints are essential in distinguishing
between different cancers. In addition, we considered the clinical role of the SA index.
We found a correlation between SA and TMB in some cancers, which may reveal the
potential of geSA to replace exoTMB as a biomarker for immune checkpoint inhibitor
therapy. Moreover, we confirmed that SA indexes perform well in patient survival analysis
and cancer diagnosis/classification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//doi.org/10.5281/zenodo.7895944. Supplementary Figures. Figure S1. (A) Mountain plot of Chr22
of THCA in the TCGA dataset. Each spot is the mean value of the copy numbers of the genes in
the corresponding group. The genes are sorted according to their locations. The space between
the two arms of each chromosome is the location of the corresponding centromere. (B) Directional
Manhattan plot of Chr22 of THCA in the TCGA dataset. The amplitude of the vertical solid line
is -10log10 (p value), where the p value is the significance test for the copy numbers of tumor and
non-malignant samples. A positive amplitude means that the mean value of the corresponding
gene in the tumor samples is greater than that in non-malignant samples. A negative amplitude
means that the mean value of the corresponding gene in the tumor samples is smaller than that in the
non-malignant samples. The solid horizontal lines are the cutoff lines according to the Bonferroni
correction (8.9 × 10−5). A gap within the individual chromosome data indicates the location of
the centrosome. Figure S2. The mountain plots of CNV for the THCA, KICH, OV, ACC, and non-
malignant samples in the TCGA dataset. For chromosomes 13, 14, 15, 21, and 22, only genes on
the q arm are represented in the microarray. Each spot is the mean copy number of the genes in
the corresponding group. The genes are sorted according to their locations. Since the variation in
THCA was slight, its curve is almost completely covered by the curve of the non-malignant samples.
Figure S3. Mountain plot of Chr12 of TGCT, ACC, KICH, OV, and LUSC in the TCGA dataset. Each
spot is the mean value of the copy numbers of genes in the corresponding group. The genes are
sorted according to their locations. Figure S4. Mountain plot of Chr20 of READ, COAD, ESAD,
USC, and KICH in the TCGA dataset. Each spot is the mean value of the copy numbers of genes
in the corresponding group. The genes are sorted according to their locations. They are the five
most varied cancers on 20q. The large amplicon between 20q11.1 and 20q11.21 may also play an
important role in identifying UCS. Figure S5. Mountain plot of Chr8 of UCS, KICH, TGCT, and LIHC
in the TCGA dataset. Each spot is the mean value of the copy numbers of genes in the corresponding
group. The genes are sorted according to their locations. They are the five most varied cancers on
8q. Two amplicons harbored in the area from 8q12.11 to 8q21.12 may help distinguish UCS from
other cancers. Figure S6. Mountain plots of CNV in READ and non-malignant samples in the TCGA
dataset. These plots show fingerprints of READ—chr7, chr8, 13q, 17p, chr18, and 20q. Each spot
is the mean value of the copy numbers of genes in the corresponding group. The genes are sorted
according to their locations. Figure S7. The mountain plots of CNV in UCS and non-malignant
samples in the TCGA dataset. Each spot is the mean value of the copy numbers of genes in the
corresponding group. The genes are sorted according to their locations. Figure S8. The bee swarm
plot of the copy numbers of CD274, JAK2, and PDCD1 in different types of cancers. The numbers are
the corresponding percentages of the samples whose copy numbers are above or below the cutoff
value (cutoff = 2). Figure S9. (A) and (B) Mountain plots of Chr18 and Chr20 in the COAD and
READ tumor and non-malignant samples. Each spot is the mean copy number of each gene in the
corresponding group. The genes are sorted according to their locations. The space between the two
arms of each chromosome is the location of the corresponding centromere. (C) and (D) The deflection
plots of the copy numbers of Chr18 and Chr20 in the COAD and READ tumor and non-malignant
samples. The blue color indicates that the deflection (tumor versus non-malignant samples) was
greater for READ, whereas the red indicates that the deflection was greater for COAD. The solid
horizontal lines are the cutoff lines according to the Bonferroni correction (1.4 × 10−4 and 7.3 × 10−5).
A gap within the individual chromosome data indicates the location of the centrosome. Figure S10.
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The mountain plots of CNV in ESSC and non-malignant samples in the TCGA dataset. These plots
show the SA fingerprints of ESSC—chr3, 4p, chr5, 7p, 8q, 9p, 11q, 20q, and chr21. Each spot is the
mean value of the copy numbers of genes in the corresponding group. The genes are sorted according
to their locations. Figure S11. The mountain plots of CNV in BLCA and non-malignant samples in
the TCGA dataset. These plots show the SA fingerprint of BLCA—chr8 and 20q. Each spot is the
mean value of the copy numbers of genes in the corresponding group. The genes are sorted according
to their locations. Figure S12. The mountain plots of CNV in GBM and non-malignant samples in the
TCGA dataset. These plots show the SA fingerprint of GBM—chr7 and chr10. Each spot is the mean
value of the copy numbers of genes in the corresponding group. The genes are sorted according to
their locations. Supplementary Tables. Table S1. The list of available cancers in the TCGA dataset
(.xlsx). Table S2. The arm-wide exoTMB value of each sample (.xlsx). Table S3. The armSA and
geSA of 35 types of cancers (.xlsx). Table S4. The armSA and geSA of HNSC and LUSC in control
experiments (.xlsx). Table S5. The Spearman correlation coefficient between exoTMB and SA in 35
types of cancers (.xlsx). Supplementary Notes. Note S1: The preprocessing of the SNV data. Note
S2: The selection criteria of nonsynonymous mutations and synonymous mutations. Note S3: The
calculation of SPCC between the SA index value and exoTMB.

Author Contributions: Y.T. and J.Z. (Junxuan Zhu) downloaded and preprocessed part of the public
data and performed the CNA analysis. J.Z. (Junxuan Zhu) and J.Z. (Jinhan Zhang) performed the
classification. Q.H., J.Z. (Jinhan Zhang) and L.W. helped with data preprocessing. K.S. supervised the
project. K.S. was the major contributor to the design of the project and the writing of the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Tianjin Health Science and Technology project
(No. TJWJ2021MS013).

Data Availability Statement: The datasets generated and/or analyzed during the current study are
available in the Legacy GDC “https://portal.gdc.cancer.gov/legacy-archive/search/f (accessed on 29
May 2021)” ClickGenome “https://www.clickgenome.org/) (accessed on 10 August 2021)” repositories.

Acknowledgments: In memory of Adi F. Gazdar (who passed away on 29 December 2018), who
developed the idea of quantifying copy number alteration profiles. He worked in the Department of
Pharmacology, Department of Internal Medicine, and Department of Pathology UT Southwestern
Medical Center, Dallas, TX, USA.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sansregret, L.; Swanton, C. The role of aneuploidy in cancer evolution. Cold Spring Harb. Perspect. Med. 2017, 7, a028373.

[CrossRef]
2. Ben-David, U.; Amon, A. Context is everything: Aneuploidy in cancer. Nat. Rev. Genet. 2020, 21, 44–62. [CrossRef] [PubMed]
3. Sansregret, L.; Vanhaesebroeck, B.; Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat.

Rev. Clin. Oncol. 2018, 15, 139–150. [CrossRef]
4. Kuznetsova, A.Y.; Seget, K.; Moeller, G.K.; de Pagter, M.S.; de Roos, J.A.; Dürrbaum, M.; Kuffer, C.; Müller, S.; Zaman, G.J.;

Kloosterman, W.P. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization
in human cells. Cell Cycle 2015, 14, 2810–2820. [CrossRef] [PubMed]

5. Bakhoum, S.F.; Landau, D.A. Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb.
Perspect. Med. 2017, 7, a029611. [CrossRef] [PubMed]

6. Hainsworth, J.D.; Greco, F.A. Cancer of Unknown Primary Site: New Treatment Paradigms in the Era of Precision Medicine. Am.
Soc. Clin. Oncol. Educ. Book 2018, 38, 20–25. [CrossRef]

7. Yamane, S.; Katada, C.; Tanabe, S.; Azuma, M.; Ishido, K.; Yano, T.; Wada, T.; Watanabe, A.; Kawanishi, N.; Furue, Y.; et al. Clinical
Outcomes in Patients with Cancer of Unknown Primary Site Treated by Gastrointestinal Oncologists. J. Transl. Int. Med. 2017, 5,
58–63. [CrossRef]

8. Qaseem, A.; Usman, N.; Jayaraj, J.S.; Janapala, R.N.; Kashif, T. Cancer of Unknown Primary: A Review on Clinical Guidelines in
the Development and Targeted Management of Patients with the Unknown Primary Site. Cureus 2019, 11, e5552. [CrossRef]

9. Jones, W.; Allardice, G.; Scott, I.; Oien, K.; Brewster, D.; Morrison, D.S. Cancers of unknown primary diagnosed during
hospitalization: A population-based study. BMC Cancer 2017, 17, 85. [CrossRef]

10. Vibert, J.; Pierron, G.; Benoist, C.; Gruel, N.; Guillemot, D.; Vincent-Salomon, A.; Le Tourneau, C.; Livartowski, A.; Mariani, O.;
Baulande, S. Identification of tissue of origin and guided therapeutic applications in cancers of unknown primary using deep
learning and RNA sequencing (TransCUPtomics). J. Mol. Diagn. 2021, 23, 1380–1392. [CrossRef]

https://portal.gdc.cancer.gov/legacy-archive/search/f
https://www.clickgenome.org/
https://doi.org/10.1101/cshperspect.a028373
https://doi.org/10.1038/s41576-019-0171-x
https://www.ncbi.nlm.nih.gov/pubmed/31548659
https://doi.org/10.1038/nrclinonc.2017.198
https://doi.org/10.1080/15384101.2015.1068482
https://www.ncbi.nlm.nih.gov/pubmed/26151317
https://doi.org/10.1101/cshperspect.a029611
https://www.ncbi.nlm.nih.gov/pubmed/28213433
https://doi.org/10.1200/EDBK_100014
https://doi.org/10.1515/jtim-2017-0006
https://doi.org/10.7759/cureus.5552
https://doi.org/10.1186/s12885-017-3083-1
https://doi.org/10.1016/j.jmoldx.2021.07.009


Symmetry 2023, 15, 1023 14 of 15

11. Brucker, A.; Lu, W.; West, R.M.; Yu, Q.-Y.; Hsiao, C.K.; Hsiao, T.-H.; Lin, C.-H.; Magnusson, P.K.; Sullivan, P.F.; Szatkiewicz, J.P.
Association test using Copy Number Profile Curves (CONCUR) enhances power in rare copy number variant analysis. PLoS
Comput. Biol. 2020, 16, e1007797. [CrossRef] [PubMed]

12. Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.;
Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [CrossRef] [PubMed]

13. Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata,
T.; et al. Mutational signatures associated with tobacco smoking in human cancer. Science 2016, 354, 618–622. [CrossRef]

14. Moore, L.; Cagan, A.; Coorens, T.H.H.; Neville, M.D.C.; Sanghvi, R.; Sanders, M.A.; Oliver, T.R.W.; Leongamornlert, D.; Ellis,
P.; Noorani, A.; et al. The mutational landscape of human somatic and germline cells. Nature 2021, 597, 381–386. [CrossRef]
[PubMed]

15. Lee, M.; Samstein, R.M.; Valero, C.; Chan, T.A.; Morris, L.G.T. Tumor mutational burden as a predictive biomarker for checkpoint
inhibitor immunotherapy. Hum. Vaccin. Immunother. 2020, 16, 112–115. [CrossRef] [PubMed]

16. Lei, Y.; Zhang, G.; Zhang, C.; Xue, L.; Yang, Z.; Lu, Z.; Huang, J.; Zang, R.; Che, Y.; Mao, S.; et al. The average copy number
variation (CNVA) of chromosome fragments is a potential surrogate for tumor mutational burden in predicting responses to
immunotherapy in non-small-cell lung cancer. Clin. Transl. Immunol. 2021, 10, e1231. [CrossRef]

17. Liu, L.; Bai, X.; Wang, J.; Tang, X.R.; Wu, D.H.; Du, S.S.; Du, X.J.; Zhang, Y.W.; Zhu, H.B.; Fang, Y.; et al. Combination of TMB and
CNA Stratifies Prognostic and Predictive Responses to Immunotherapy Across Metastatic Cancer. Clin. Cancer Res. 2019, 25,
7413–7423. [CrossRef] [PubMed]

18. Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al.
Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173,
291–304.e296. [CrossRef]

19. Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.;
Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell
2018, 173, 400–416.e11. [CrossRef]

20. Thu, K.L.; Papari-Zareei, M.; Stastny, V.; Song, K.; Peyton, M.; Martinez, V.D.; Zhang, Y.A.; Castro, I.B.; Varella-Garcia, M.;
Liang, H.; et al. A comprehensively characterized cell line panel highly representative of clinical ovarian high-grade serous
carcinomas. Oncotarget 2016, 8, 50489–50499. [CrossRef]

21. Qiu, Z.W.; Bi, J.H.; Gazdar, A.F.; Song, K. Genome-wide copy number variation pattern analysis and a classification signature for
non-small cell lung cancer. Genes Chromosomes Cancer 2017, 56, 559–569. [CrossRef] [PubMed]

22. Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden
as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [CrossRef]

23. Supek, F.; Miñana, B.; Valcárcel, J.; Gabaldón, T.; Lehner, B. Synonymous Mutations Frequently Act as Driver Mutations in Human
Cancers. Cell 2014, 156, 1324–1335. [CrossRef]

24. Sharma, Y.; Miladi, M.; Dukare, S.; Boulay, K.; Caudron-Herger, M.; Gross, M.; Backofen, R.; Diederichs, S. A pan-cancer analysis
of synonymous mutations. Nat. Commun. 2019, 10, 2569. [CrossRef]

25. Chu, D.; Wei, L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger
purifying selections than expectation. BMC Cancer 2019, 19, 359. [CrossRef]

26. Li, Q.; Li, J.; Yu, C.P.; Chang, S.; Xie, L.L.; Wang, S. Synonymous mutations that regulate translation speed might play a
non-negligible role in liver cancer development. BMC Cancer 2021, 21, 388. [CrossRef]

27. Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants
in cancer. Genome Res. 2018, 28, 1747–1756. [CrossRef] [PubMed]

28. Bi, J.-H.; Tong, Y.-F.; Qiu, Z.-W.; Yang, X.-F.; Minna, J.; Gazdar, A.F.; Song, K. ClickGene: An open cloud-based platform for big
pan-cancer data genome-wide association study, visualization and exploration. BioData Min. 2019, 12, 12. [CrossRef] [PubMed]

29. Camacho, N.; Van Loo, P.; Edwards, S.; Kay, J.D.; Matthews, L.; Haase, K.; Clark, J.; Dennis, N.; Thomas, S.; Kremeyer, B.; et al.
Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS
Genet. 2017, 13, e1007001. [CrossRef]

30. Chen, R.C.; Rumble, R.B.; Loblaw, D.A.; Finelli, A.; Ehdaie, B.; Cooperberg, M.R.; Morgan, S.C.; Tyldesley, S.; Haluschak, J.J.;
Tan, W.; et al. Active Surveillance for the Management of Localized Prostate Cancer (Cancer Care Ontario Guideline): American
Society of Clinical Oncology Clinical Practice Guideline Endorsement. J. Clin. Oncol. 2016, 34, 2182–2190. [CrossRef]

31. Tosoian, J.J.; Carter, H.B.; Lepor, A.; Loeb, S. Active surveillance for prostate cancer: Current evidence and contemporary state of
practice. Nat. Rev. Urol. 2016, 13, 205–215. [CrossRef]

32. Campbell, J.D.; Yau, C.; Bowlby, R.; Liu, Y.; Brennan, K.; Fan, H.; Taylor, A.M.; Wang, C.; Walter, V.; Akbani, R. Genomic, pathway
network, and immunologic features distinguishing squamous carcinomas. Cell Rep. 2018, 23, 194–212.e6. [CrossRef] [PubMed]

33. Helleday, T.; Eshtad, S.; Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 2014, 15,
585–598. [CrossRef] [PubMed]

34. Burrell, R.A.; McClelland, S.E.; Endesfelder, D.; Groth, P.; Weller, M.C.; Shaikh, N.; Domingo, E.; Kanu, N.; Dewhurst, S.M.;
Gronroos, E.; et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013, 494, 492–496.
[CrossRef]

https://doi.org/10.1371/journal.pcbi.1007797
https://www.ncbi.nlm.nih.gov/pubmed/32365089
https://doi.org/10.1038/nature12477
https://www.ncbi.nlm.nih.gov/pubmed/23945592
https://doi.org/10.1126/science.aag0299
https://doi.org/10.1038/s41586-021-03822-7
https://www.ncbi.nlm.nih.gov/pubmed/34433962
https://doi.org/10.1080/21645515.2019.1631136
https://www.ncbi.nlm.nih.gov/pubmed/31361563
https://doi.org/10.1002/cti2.1231
https://doi.org/10.1158/1078-0432.CCR-19-0558
https://www.ncbi.nlm.nih.gov/pubmed/31515453
https://doi.org/10.1016/j.cell.2018.03.022
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.18632/oncotarget.9929
https://doi.org/10.1002/gcc.22460
https://www.ncbi.nlm.nih.gov/pubmed/28379620
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1016/j.cell.2014.01.051
https://doi.org/10.1038/s41467-019-10489-2
https://doi.org/10.1186/s12885-019-5572-x
https://doi.org/10.1186/s12885-021-08131-w
https://doi.org/10.1101/gr.239244.118
https://www.ncbi.nlm.nih.gov/pubmed/30341162
https://doi.org/10.1186/s13040-019-0202-3
https://www.ncbi.nlm.nih.gov/pubmed/31391866
https://doi.org/10.1371/journal.pgen.1007001
https://doi.org/10.1200/JCO.2015.65.7759
https://doi.org/10.1038/nrurol.2016.45
https://doi.org/10.1016/j.celrep.2018.03.063
https://www.ncbi.nlm.nih.gov/pubmed/29617660
https://doi.org/10.1038/nrg3729
https://www.ncbi.nlm.nih.gov/pubmed/24981601
https://doi.org/10.1038/nature11935


Symmetry 2023, 15, 1023 15 of 15

35. Varadhachary, G.R.; Raber, M.N.; Matamoros, A.; Abbruzzese, J.L. Carcinoma of unknown primary with a colon-cancer profile—
Changing paradigm and emerging definitions. Lancet Oncol. 2008, 9, 596–599. [CrossRef]

36. Condorelli, D.F.; Privitera, A.P.; Barresi, V. Chromosomal Density of Cancer Up-Regulated Genes, Aberrant Enhancer Activity
and Cancer Fitness Genes Are Associated with Transcriptional Cis-Effects of Broad Copy Number Gains in Colorectal Cancer. Int.
J. Mol. Sci. 2019, 20, 4652. [CrossRef]

37. Zhang, B.; Yao, K.; Zhou, E.; Zhang, L.; Cheng, C. Chr20q Amplification Defines a Distinct Molecular Subtype of Microsatellite
Stable Colorectal Cancer. Cancer Res. 2021, 81, 1977–1987. [CrossRef]

38. Hoadley, K.A.; Yau, C.; Wolf, D.M.; Cherniack, A.D.; Tamborero, D.; Ng, S.; Leiserson, M.D.M.; Niu, B.; McLellan, M.D.;
Uzunangelov, V.; et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of
origin. Cell 2014, 158, 929–944. [CrossRef] [PubMed]

39. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S1470-2045(08)70151-7
https://doi.org/10.3390/ijms20184652
https://doi.org/10.1158/0008-5472.CAN-20-4009
https://doi.org/10.1016/j.cell.2014.06.049
https://www.ncbi.nlm.nih.gov/pubmed/25109877

	Introduction 
	Materials and Methods 
	Data Preprocessing 
	SA Index Based on the DTW Measure 
	The exoTMB for 35 Different Types of Cancers 

	Results 
	SA Index Values of 35 Different Types of Cancers and Their Molecular Distances from Each Other 
	Fingerprints of 35 Different Types of Cancers 

	Discussion 
	Conclusions 
	References

